AWS Certified Advanced Networking Specialty Part 2
Q21. A company is deploying a new application on AWS. The application uses dynamic multicasting. The company has five VPCs that are all attached to a transit gateway. Amazon EC2 instances in each VPC need to be able to register dynamically to receive a multicast transmission. How should a network engineer configure the AWS resources to meet these requirements?
A. Create a static source multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders’ network interface with the multicast domain. Adjust the network ACLs to allow UDP traffic from the source to all receivers and to allow UDP traffic that is sent to the multicast group address.
B. Create a static source multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders’ network interface with the multicast domain. Adjust the network ACLs to allow TCP traffic from the source to all receivers and to allow TCP traffic that is sent to the multicast group address.
C. Create an Internet Group Management Protocol (IGMP) multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders’ network interface with the multicast domain. Adjust the network ACLs to allow UDP traffic from the source to all receivers and to allow UDP traffic that is sent to the multicast group address.
D. Create an Internet Group Management Protocol (IGMP) multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders’ network interface with the multicast domain. Adjust the network ACLs to allow TCP traffic from the source to all receivers and to allow TCP traffic that is sent to the multicast group address.
Hint Answer:C
Q22. A company is deploying third-party firewall appliances for traffic inspection and NAT capabilities in its VPC. The VPC is configured with private subnets and public subnets. The company needs to deploy the firewall appliances behind a load balancer. Which architecture will meet these requirements MOST cost-effectively?
A. Deploy a Gateway Load Balancer with the firewall appliances as targets. Configure the firewall appliances with a single network interface in a private subnet. Use a NAT gateway to send the traffic to the internet after inspection.
B. Deploy a Gateway Load Balancer with the firewall appliances as targets. Configure the firewall appliances with two network interfaces: one network interface in a private subnet and another network interface in a public subnet. Use the NAT functionality on the firewall appliances to send the traffic to the internet after inspection.
C. Deploy a Network Load Balancer with the firewall appliances as targets. Configure the firewall appliances with a single network interface in a private subnet. Use a NAT gateway to send the traffic to the internet after inspection.
D. Deploy a Network Load Balancer with the firewall appliances as targets. Configure the firewall appliances with two network interfaces: one network interface in a private subnet and another network interface in a public subnet. Use the NAT functionality on the firewall appliances to send the traffic to the internet after inspection.
Hint Answer:B
Q23. A company is using a NAT gateway to allow internet connectivity for private subnets in a VPC in the us-west-2 Region. After a security audit, the company needs to remove the NAT gateway. In the private subnets, the company has resources that use the unified Amazon CloudWatch agent. A network engineer must create a solution to ensure that the unified CloudWatch agent continues to work after the removal of the NAT gateway. Which combination of steps should the network engineer take to meet these requirements? (Choose three.)
A. Validate that private DNS is enabled on the VPC by setting the enable DnsHostnames VPC attribute and the enable DnsSupport VPC attribute to true.
B. Create a new security group with an entry to allow outbound traffic that uses the TCP protocol on port 443 to destination 0.0.0.0/0
C. Create a new security group with entries to allow inbound traffic that uses the TCP protocol on port 443 from the IP prefixes of the private subnets.
D. Create the following interface VPC endpoints in the VPC: com.amazonaws.us-west-2.logs and com.amazonaws.us-west-2.monitoring. Associate the new security group with the endpoint network interfaces.
E. Create the following interface VPC endpoint in the VPC: com.amazonaws.us-west-2.cloudwatch. Associate the new security group with the endpoint network interfaces.
F. Associate the VPC endpoint or endpoints with route tables that the private subnets use.
Hint Answer:ACD
Q24. A company has multiple AWS accounts. Each account contains one or more VPCs. A new security guideline requires the inspection of all traffic between VPCs. The company has deployed a transit gateway that provides connectivity between all VPCs. The company also has deployed a shared services VPC with Amazon EC2 instances that include IDS services for stateful inspection. The EC2 instances are deployed across three Availability Zones. The company has set up VPC associations and routing on the transit gateway. The company has migrated a few test VPCs to the new solution for traffic inspection. Soon after the configuration of routing, the company receives reports of intermittent connections for traffic that crosses Availability Zones.
What should a network engineer do to resolve this issue?
A. Modify the transit gateway VPC attachment on the shared services VPC by enabling cross-Availability Zone load balancing.
B. Modify the transit gateway VPC attachment on the shared services VPC by enabling appliance mode support.
C. Modify the transit gateway by selecting VPN equal-cost multi-path (ECMP) routing support.
D. Modify the transit gateway by selecting multicast support.
Hint Answer:B
Q25. An insurance company is planning the migration of workloads from its on-premises data center to the AWS Cloud. The company requires end-to-end domain name resolution. Bi-directional DNS resolution between AWS and the existing on-premises environments must be established. The workloads will be migrated into multiple VPCs. The workloads also have dependencies on each other, and not all the workloads will be migrated at the same time. Which solution meets these requirements?
A. Configure a private hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPC. Define Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the application VPC private hosted zones with the egress VPC, and share the Route 53 Resolver rules with the application accounts by using AWS Resource Access Manager. Configure the on-premises DNS servers to forward the cloud domains to the Route 53 inbound endpoints.
B. Configure a public hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPC. Define Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the application VPC private hosted zones with the egress VPC. and share the Route 53 Resolver rules with the application accounts by using AWS Resource Access Manager. Configure the on-premises DNS servers to forward the cloud domains to the Route 53 inbound endpoints.
C. Configure a private hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPDefine Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the application VPC private hosted zones with the egress VPand share the Route 53 Resolver rules with the application accounts by using AWS Resource Access Manager. Configure the on-premises DNS servers to forward the cloud domains to the Route 53 outbound endpoints.
D. Configure a private hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPC. Define Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the Route 53 outbound rules with the application VPCs, and share the private hosted zones with the application accounts by using AWS Resource Access Manager. Configure the on-premises DNS servers to forward the cloud domains to the Route 53 inbound endpoints.
Hint Answer: A
Q26.A company manages resources across VPCs in multiple AWS Regions. The company needs to connect to the resources by using its internal domain name. A network engineer needs to apply the aws.example.com DNS suffix to all resources. What must the network engineer do to meet this requirement?
A. Create an Amazon Route 53 private hosted zone for aws.example.com in each Region that has resources. Associate the private hosted zone with that Region’s VPC. In the appropriate private hosted zone, create DNS records for the resources in each Region.
B. Create one Amazon Route 53 private hosted zone for aws.example.com. Configure the private hosted zone to allow zone transfers with every VPC.
C. Create one Amazon Route 53 private hosted zone for example.com. Create a single resource record for aws.example.com in the private hosted zone. Apply a multivalue answer routing policy to the record. Add all VPC resources as separate values in the routing policy.
D. Create one Amazon Route 53 private hosted zone for aws.example.com. Associate the private hosted zone with every VPC that has resources. In the private hosted zone, create DNS records for all resources.
Hint Answer: D
Q27.A company has hundreds of VPCs on AWS. All the VPCs access the public endpoints of Amazon S3 and AWS Systems Manager through NAT gateways. All the traffic from the VPCs to Amazon S3 and Systems Manager travels through the NAT gateways. The company’s network engineer must centralize access to these services and must eliminate the need to use public endpoints. Which solution will meet these requirements with the LEAST operational overhead?
A. Create a central egress VPC that has private NAT gateways. Connect all the VPCs to the central egress VPC by using AWS Transit Gateway. Use the private NAT gateways to connect to Amazon S3 and Systems Manager by using private IP addresses.
B. Create a central shared services VPC. In the central shared services VPC, create interface VPC endpoints for Amazon S3 and Systems Manager to access. Ensure that private DNS is turned off. Connect all the VPCs to the central shared services VPC by using AWS Transit Gateway. Create an Amazon Route 53 forwarding rule for each interface VPC endpoint. Associate the forwarding rules with all the VPCs. Forward DNS queries to the interface VPC endpoints in the shared services VPC.
C. Create a central shared services VPC in the central shared services VPC, create interface VPC endpoints for Amazon S3 and Systems Manager to access. Ensure that private DNS is turned off. Connect all the VPCs to the central shared services VPC by using AWS Transit Gateway. Create an Amazon Route 53 private hosted zone with a full service endpoint name for Amazon S3 and Systems Manager. Associate the private hosted zones with all the VPCs. Create an alias record in each private hosted zone with the full AWS service endpoint pointing to the interface VPC endpoint in the shared services VPC.
D. Create a central shared services VPC. In the central shared services VPC, create interface VPC endpoints for Amazon S3 and Systems Manager to access. Connect all the VPCs to the central shared services VPC by using AWS Transit Gateway. Ensure that private DNS is turned on for the interface VPC endpoints and that the transit gateway is created with DNS support turned on.
Hint Answer: C
Q28. A company is developing an application in which IoT devices will report measurements to the AWS Cloud. The application will have millions of end users. The company observes that the IoT devices cannot support DNS resolution. The company needs to implement an Amazon EC2 Auto Scaling solution so that the IoT devices can connect to an application endpoint without using DNS. Which solution will meet these requirements MOST cost-effectively?
A. Use an Application Load Balancer (ALB)-type target group for a Network Load Balancer (NLB). Create an EC2 Auto Scaling group. Attach the Auto Scaling group to the ALB. Set up the IoT devices to connect to the IP addresses of the NLB.
B. Use an AWS Global Accelerator accelerator with an Application Load Balancer (ALB) endpoint. Create an EC2 Auto Scaling group. Attach the Auto Scaling group to the ALSet up the IoT devices to connect to the IP addresses of the accelerator.
C. Use a Network Load Balancer (NLB). Create an EC2 Auto Scaling group. Attach the Auto Scaling group to the NLB. Set up the IoT devices to connect to the IP addresses of the NLB.
D. Use an AWS Global Accelerator accelerator with a Network Load Balancer (NLB) endpoint. Create an EC2 Auto Scaling group. Attach the Auto Scaling group to the NLB. Set up the IoT devices to connect to the IP addresses of the accelerator.
Hint Answer: D
Q29. A company is migrating an existing application to a new AWS account. The company will deploy the application in a single AWS Region by using one VPC and multiple Availability Zones. The application will run on Amazon EC2 instances. Each Availability Zone will have several EC2 instances. The EC2 instances will be deployed in private subnets.
The company’s clients will connect to the application by using a web browser with the HTTPS protocol. Inbound connections must be distributed across the Availability Zones and EC2 instances. All connections from the same client session must be connected to the same EC2 instance. The company must provide end-to-end encryption for all connections between the clients and the application by using the application SSL certificate. Which solution will meet these requirements?
A. Create a Network Load Balancer. Create a target group. Set the protocol to TCP and the port to 443 for the target group. Turn on session affinity (sticky sessions). Register the EC2 instances as targets. Create a listener. Set the protocol to TCP and the port to 443 for the listener. Deploy SSL certificates to the EC2 instances.
B. Create an Application Load Balancer. Create a target group. Set the protocol to HTTP and the port to 80 for the target group. Turn on session affinity (sticky sessions) with an application-based cookie policy. Register the EC2 instances as targets. Create an HTTPS listener. Set the default action to forward to the target group. Use AWS Certificate Manager (ACM) to create a certificate for the listener.
C. Create a Network Load Balancer. Create a target group. Set the protocol to TLS and the port to 443 for the target group. Turn on session affinity (sticky sessions). Register the EC2 instances as targets. Create a listener. Set the protocol to TLS and the port to 443 for the listener. Use AWS Certificate Manager (ACM) to create a certificate for the application.
D. Create an Application Load Balancer. Create a target group. Set the protocol to HTTPS and the port to 443 for the target group. Turn on session affinity (sticky sessions) with an application-based cookie policy. Register the EC2 instances as targets. Create an HTTP listener. Set the port to 443 for the listener. Set the default action to forward to the target group.
Hint Answer: A
Q30: A company is planning to use Amazon S3 to archive financial data. The data is currently stored in an on-premises data center. The company uses AWS Direct Connect with a Direct Connect gateway and a transit gateway to connect to the on-premises data center. The data cannot be transported over the public internet and must be encrypted in transit.
Which solution will meet these requirements?
A. Create a Direct Connect public VIF. Set up an IPsec VPN connection over the public VIF to access Amazon S3. Use HTTPS for communication.
B. Create an IPsec VPN connection over the transit VIF. Create a VPC and attach the VPC to the transit gateway. In the VPC, provision an interface VPC endpoint for Amazon S3. Use HTTPS for communication.
C. Create a VPC and attach the VPC to the transit gateway. In the VPC, provision an interface VPC endpoint for Amazon S3. Use HTTPS for communication.
D. Create a Direct Connect public VIF. Set up an IPsec VPN connection over the public VIF to the transit gateway. Create an attachment for Amazon S3. Use HTTPS for communication.
Hint Answer: B
Q31. An IoT company sells hardware sensor modules that periodically send out temperature, humidity, pressure, and location data through the MQTT messaging protocol. The hardware sensor modules send this data to the company’s on-premises MQTT brokers that run on Linux servers behind a load balancer. The hardware sensor modules have been hardcoded with public IP addresses to reach the brokers. The company is growing and is acquiring customers across the world. The existing solution can no longer scale and is introducing additional latency because of the company’s global presence. As a result, the company decides to migrate its entire infrastructure from on premises to the AWS Cloud. The company needs to migrate without reconfiguring the hardware sensor modules that are already deployed across the world. The solution also must minimize latency. The company migrates the MQTT brokers to run on Amazon EC2 instances. What should the company do next to meet these requirements?
A. Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Use Bring Your Own IP (BYOIP) from the on-premises network with the NLB.
B. Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the NLB Use Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator.
C. Place the EC2 instances behind an Application Load Balancer (ALB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the ALB. Use Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator
D. Place the EC2 instances behind an Amazon CloudFront distribution. Use Bring Your Own IP (BYOIP) from the on-premises network with CloudFront.
Hint Answer: B
Q32. A company has expanded its network to the AWS Cloud by using a hybrid architecture with multiple AWS accounts. The company has set up a shared AWS account for the connection to its on-premises data centers and the company offices. The workloads consist of private web-based services for internal use. These services run in different AWS accounts. Office-based employees consume these services by using a DNS name in an on-premises DNS zone that is named example.internal. The process to register a new service that runs on AWS requires a manual and complicated change request to the internal DNS. The process involves many teams.
The company wants to update the DNS registration process by giving the service creators access that will allow them to register their DNS records. A network engineer must design a solution that will achieve this goal. The solution must maximize cost-effectiveness and must require the least possible number of configuration changes. Which combination of steps should the network engineer take to meet these requirements? (Choose three.)
A. Create a record for each service in its local private hosted zone (serviceA.account1.aws.example.internal). Provide this DNS record to the employees who need access.
B. Create an Amazon Route 53 Resolver inbound endpoint in the shared account VPC. Create a conditional forwarder for a domain named aws.example.internal on the on-premises DNS servers. Set the forwarding IP addresses to the inbound endpoint’s IP addresses that were created.
C. Create an Amazon Route 53 Resolver rule to forward any queries made to onprem.example.internal to the on-premises DNS servers.
D. Create an Amazon Route 53 private hosted zone named aws.example.internal in the shared AWS account to resolve queries for this domain.
E. Launch two Amazon EC2 instances in the shared AWS account. Install BIND on each instance. Create a DNS conditional forwarder on each BIND server to forward queries for each subdomain under aws.example.internal to the appropriate private hosted zone in each AWS account. Create a conditional forwarder for a domain named aws.example.internal on the on-premises DNS servers. Set the forwarding IP addresses to the IP addresses of the BIND servers.
F. Create a private hosted zone in the shared AWS account for each account that runs the service. Configure the private hosted zone to contain aws.example.internal in the domain (account1.aws.example.internal). Associate the private hosted zone with the VPC that runs the service and the shared account VPC.
Hint Answer: BCE
Q33.A company has two on-premises data center locations. There is a company-managed router at each data center. Each data center has a dedicated AWS Direct Connect connection to a Direct Connect gateway through a private virtual interface. The router for the first location is advertising 110 routes to the Direct Connect gateway by using BGP, and the router for the second location is advertising 60 routes to the Direct Connect gateway by using BGP. The Direct Connect gateway is attached to a company VPC through a virtual private gateway. A network engineer receives reports that resources in the VPC are not reachable from various locations in either data center. The network engineer checks the VPC route table and sees that the routes from the first data center location are not being populated into the route table. The network engineer must resolve this issue in the most operationally efficient manner. What should the network engineer do to meet these requirements?
A. Remove the Direct Connect gateway, and create a new private virtual interface from each company router to the virtual private gateway of the VPC.
B. Change the router configurations to summarize the advertised routes.
C. Open a support ticket to increase the quota on advertised routes to the VPC route table.
D. Create an AWS Transit Gateway. Attach the transit gateway to the VPC, and connect the Direct Connect gateway to the transit gateway.
Hint Answer: B
Q34. An ecommerce company is hosting a web application on Amazon EC2 instances to handle continuously changing customer demand. The EC2 instances are part of an Auto Scaling group. The company wants to implement a solution to distribute traffic from customers to the EC2 instances. The company must encrypt all traffic at all stages between the customers and the application servers. No decryption at intermediate points is allowed. Which solution will meet these requirements?
A. Create an Application Load Balancer (ALB). Add an HTTPS listener to the ALB. Configure the Auto Scaling group to register instances with the ALB’s target group.
B. Create an Amazon CloudFront distribution. Configure the distribution with a custom SSL/TLS certificate. Set the Auto Scaling group as the distribution’s origin.
C. Create a Network Load Balancer (NLB). Add a TCP listener to the NLB. Configure the Auto Scaling group to register instances with the NLB’s target group.
D. Create a Gateway Load Balancer (GLB). Configure the Auto Scaling group to register instances with the GLB’s target group.
Hint Answer:C
Q35. A company is using custom DNS servers that run BIND for name resolution in its VPCs. The VPCs are deployed across multiple AWS accounts that are part of the same organization in AWS Organizations. All the VPCs are connected to a transit gateway. The BIND servers are running in a central VPC and are configured to forward all queries for an on-premises DNS domain to DNS servers that are hosted in an on-premises data center. To ensure that all the VPCs use the custom DNS servers, a network engineer has configured a VPC DHCP options set in all the VPCs that specifies the custom DNS servers to be used as domain name servers.
Multiple development teams in the company want to use Amazon Elastic File System (Amazon EFS). A development team has created a new EFS file system but cannot mount the file system to one of its Amazon EC2 instances. The network engineer discovers that the EC2 instance cannot resolve the IP address for the EFS mount point fs-33444567d.efs.us-east-1.amazonaws.com. The network engineer needs to implement a solution so that development teams throughout the organization can mount EFS file systems.
Which combination of steps will meet these requirements? (Choose two.)
A. Configure the BIND DNS servers in the central VPC to forward queries for efs.us-east-1.amazonaws.com to the Amazon provided DNS server (169.254.169.253).
B. Create an Amazon Route 53 Resolver outbound endpoint in the central VPC. Update all the VPC DHCP options sets to use AmazonProvidedDNS for name resolution.
C. Create an Amazon Route 53 Resolver inbound endpoint in the central VPC. Update all the VPC DHCP options sets to use the Route 53 Resolver inbound endpoint in the central VPC for name resolution.
D. Create an Amazon Route 53 Resolver rule to forward queries for the on-premises domain to the on-premises DNS servers. Share the rule with the organization by using AWS Resource Access Manager (AWS RAM). Associate the rule with all the VPCs.
E. Create an Amazon Route 53 private hosted zone for the efs.us-east-1.amazonaws.com domain. Associate the private hosted zone with the VPC where the EC2 instance is deployed. Create an A record for fs-33444567d.efs.us-east-1.amazonaws.com in the private hosted zone. Configure the A record to return the mount target of the EFS mount point.
Hint Answer: B D
Q36.A company has deployed an AWS Network Firewall firewall into a VPC. A network engineer needs to implement a solution to deliver Network Firewall flow logs to the company’s Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster in the shortest possible time.
Which solution will meet these requirements?
A. Create an Amazon S3 bucket. Create an AWS Lambda function to load logs into the Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster. Enable Amazon Simple Notification Service (Amazon SNS) notifications on the S3 bucket to invoke the Lambda function. Configure flow logs for the firewall. Set the S3 bucket as the destination.
B. Create an Amazon Kinesis Data Firehose delivery stream that includes the Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster as the destination. Configure flow logs for the firewall Set the Kinesis Data Firehose delivery stream as the destination for the Network Firewall flow logs.
C. Configure flow logs for the firewall. Set the Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster as the destination for the Network Firewall flow logs.
D. Create an Amazon Kinesis data stream that includes the Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster as the destination. Configure flow logs for the firewall. Set the Kinesis data stream as the destination for the Network Firewall flow logs.
Hint Answer: B
Q37. A retail company is running its service on AWS. The company’s architecture includes Application Load Balancers (ALBs) in public subnets. The ALB target groups are configured to send traffic to backend Amazon EC2 instances in private subnets. These backend EC2 instances can call externally hosted services over the internet by using a NAT gateway.
The company has noticed in its billing that NAT gateway usage has increased significantly. A network engineer needs to find out the source of this increased usage.
Which options can the network engineer use to investigate the traffic through the NAT gateway? (Choose two.)
A. Enable VPC flow logs on the NAT gateway’s elastic network interface. Publish the logs to a log group in Amazon CloudWatch Logs. Use CloudWatch Logs Insights to query and analyze the logs.
B. Enable NAT gateway access logs. Publish the logs to a log group in Amazon CloudWatch Logs. Use CloudWatch Logs Insights to query and analyze the logs.
C. Configure Traffic Mirroring on the NAT gateway’s elastic network interface. Send the traffic to an additional EC2 instance. Use tools such as tcpdump and Wireshark to query and analyze the mirrored traffic.
D. Enable VPC flow logs on the NAT gateway’s elastic network interface. Publish the logs to an Amazon S3 bucket. Create a custom table for the S3 bucket in Amazon Athena to describe the log structure. Use Athena to query and analyze the logs.
E. Enable NAT gateway access logs. Publish the logs to an Amazon S3 bucket. Create a custom table for the S3 bucket in Amazon Athena to describe the log structure. Use Athena to query and analyze the logs.
Hint Answer: A D
Q38:A network engineer is designing the architecture for a healthcare company’s workload that is moving to the AWS Cloud. All data to and from the on-premises environment must be encrypted in transit. All traffic also must be inspected in the cloud before the traffic is allowed to leave the cloud and travel to the on-premises environment or to the internet. The company will expose components of the workload to the internet so that patients can reserve appointments. The architecture must secure these components and protect them against DDoS attacks. The architecture also must provide protection against financial liability for services that scale out during a DDoS event. Which combination of steps should the network engineer take to meet all these requirements for the workload? (Choose three.)
A. Use Traffic Mirroring to copy all traffic to a fleet of traffic capture appliances.
B. Set up AWS WAF on all network components.
C. Configure an AWS Lambda function to create Deny rules in security groups to block malicious IP addresses.
D. Use AWS Direct Connect with MACsec support for connectivity to the cloud.
E. Use Gateway Load Balancers to insert third-party firewalls for inline traffic inspection.
F. Configure AWS Shield Advanced and ensure that it is configured on all public assets.
Hint Answer: D E F
Q39. A software-as-a-service (SaaS) provider hosts its solution on Amazon EC2 instances within a VPC in the AWS Cloud. All of the provider’s customers also have their environments in the AWS Cloud. A recent design meeting revealed that the customers have IP address overlap with the provider’s AWS deployment. The customers have stated that they will not share their internal IP addresses and that they do not want to connect to the provider’s SaaS service over the internet. Which combination of steps is part of a solution that meets these requirements? (Choose two.)
A. Deploy the SaaS service endpoint behind a Network Load Balancer.
B. Configure an endpoint service, and grant the customers permission to create a connection to the endpoint service.
C. Deploy the SaaS service endpoint behind an Application Load Balancer.
D. Configure a VPC peering connection to the customer VPCs. Route traffic through NAT gateways.
E. Deploy an AWS Transit Gateway, and connect the SaaS VPC to it. Share the transit gateway with the customers. Configure routing on the transit gateway.
Hint Answer: A B
Q40. A company uses a 4 Gbps AWS Direct Connect dedicated connection with a link aggregation group (LAG) bundle to connect to five VPCs that are deployed in the us-east-1 Region. Each VPC serves a different business unit and uses its own private VIF for connectivity to the on-premises environment. Users are reporting slowness when they access resources that are hosted on AWS. A network engineer finds that there are sudden increases in throughput and that the Direct Connect connection becomes saturated at the same time for about an hour each business day. The company wants to know which business unit is causing the sudden increase in throughput. The network engineer must find out this information and implement a solution to resolve the problem. Which solution will meet these requirements?
A. Review the Amazon CloudWatch metrics for VirtualInterfaceBpsEgress and VirtualInterfaceBpsIngress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Create a new 10 Gbps dedicated connection. Shift traffic from the existing dedicated connection to the new dedicated connection.
B. Review the Amazon CloudWatch metrics for VirtualInterfaceBpsEgress and VirtualInterfaceBpsIngress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Upgrade the bandwidth of the existing dedicated connection to 10 Gbps.
C. Review the Amazon CloudWatch metrics for ConnectionBpsIngress and ConnectionPpsEgress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Upgrade the existing dedicated connection to a 5 Gbps hosted connection.
D. Review the Amazon CloudWatch metrics for ConnectionBpsIngress and ConnectionPpsEgress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Create a new 10 Gbps dedicated connection. Shift traffic from the existing dedicated connection to the new dedicated connection.
Hint Answer:A